Serveur d'exploration Glutathion S-transférase végétale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exogenous sodium diethyldithiocarbamate, a Jasmonic acid biosynthesis inhibitor, induced resistance to powdery mildew in wheat.

Identifieur interne : 000154 ( Main/Exploration ); précédent : 000153; suivant : 000155

Exogenous sodium diethyldithiocarbamate, a Jasmonic acid biosynthesis inhibitor, induced resistance to powdery mildew in wheat.

Auteurs : Yinghui Li ; Lina Qiu ; Qiang Zhang ; Xiangxi Zhuansun ; Huifang Li ; Xin Chen ; Tamar Krugman ; Qixin Sun ; Chaojie Xie

Source :

RBID : pubmed:32285024

Abstract

Jasmonic acid (JA) is an important plant hormone associated with plant-pathogen defense. To study the role of JA in plant-fungal interactions, we applied a JA biosynthesis inhibitor, sodium diethyldithiocarbamate (DIECA), on wheat leaves. Our results showed that application of 10 mM DIECA 0-2 days before inoculation effectively induced resistance to powdery mildew (Bgt) in wheat. Transcriptome analysis identified 364 up-regulated and 68 down-regulated differentially expressed genes (DEGs) in DIECA-treated leaves compared with water-treated leaves. Gene ontology (GO) enrichment analysis of the DEGs revealed important GO terms and pathways, in particular, response to growth hormones, activity of glutathione metabolism (e.g., glutathione transferase activity), oxalate oxidase, and chitinase activity. Gene annotaion revealed that some pathogenesis-related (PR) genes, such as PR1.1, PR1, PR10, PR4a, Chitinase 8, beta-1,3-glucanase, RPM1, RGA2, and HSP70, were induced by DIECA treatment. DIECA reduced JA and auxin (IAA) levels, while increased brassinosteroid, glutathione, and ROS lesions in wheat leaves, which corroborated with the transcriptional changes. Our results suggest that DIECA can be applied to increase plant immunity and reduce the severity of Bgt disease in wheat fields.

DOI: 10.1002/pld3.212
PubMed: 32285024
PubMed Central: PMC7146025


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Exogenous sodium diethyldithiocarbamate, a Jasmonic acid biosynthesis inhibitor, induced resistance to powdery mildew in wheat.</title>
<author>
<name sortKey="Li, Yinghui" sort="Li, Yinghui" uniqKey="Li Y" first="Yinghui" last="Li">Yinghui Li</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Institute of Evolution University of Haifa, Mt. Carmel Haifa Israel.</nlm:affiliation>
<wicri:noCountry code="subField">Mt</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Lina" sort="Qiu, Lina" uniqKey="Qiu L" first="Lina" last="Qiu">Lina Qiu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Qiang" sort="Zhang, Qiang" uniqKey="Zhang Q" first="Qiang" last="Zhang">Qiang Zhang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zhuansun, Xiangxi" sort="Zhuansun, Xiangxi" uniqKey="Zhuansun X" first="Xiangxi" last="Zhuansun">Xiangxi Zhuansun</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Li, Huifang" sort="Li, Huifang" uniqKey="Li H" first="Huifang" last="Li">Huifang Li</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xin" sort="Chen, Xin" uniqKey="Chen X" first="Xin" last="Chen">Xin Chen</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Krugman, Tamar" sort="Krugman, Tamar" uniqKey="Krugman T" first="Tamar" last="Krugman">Tamar Krugman</name>
<affiliation>
<nlm:affiliation>Institute of Evolution University of Haifa, Mt. Carmel Haifa Israel.</nlm:affiliation>
<wicri:noCountry code="subField">Mt</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Sun, Qixin" sort="Sun, Qixin" uniqKey="Sun Q" first="Qixin" last="Sun">Qixin Sun</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Xie, Chaojie" sort="Xie, Chaojie" uniqKey="Xie C" first="Chaojie" last="Xie">Chaojie Xie</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32285024</idno>
<idno type="pmid">32285024</idno>
<idno type="doi">10.1002/pld3.212</idno>
<idno type="pmc">PMC7146025</idno>
<idno type="wicri:Area/Main/Corpus">000166</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000166</idno>
<idno type="wicri:Area/Main/Curation">000166</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000166</idno>
<idno type="wicri:Area/Main/Exploration">000166</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Exogenous sodium diethyldithiocarbamate, a Jasmonic acid biosynthesis inhibitor, induced resistance to powdery mildew in wheat.</title>
<author>
<name sortKey="Li, Yinghui" sort="Li, Yinghui" uniqKey="Li Y" first="Yinghui" last="Li">Yinghui Li</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Institute of Evolution University of Haifa, Mt. Carmel Haifa Israel.</nlm:affiliation>
<wicri:noCountry code="subField">Mt</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Lina" sort="Qiu, Lina" uniqKey="Qiu L" first="Lina" last="Qiu">Lina Qiu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Qiang" sort="Zhang, Qiang" uniqKey="Zhang Q" first="Qiang" last="Zhang">Qiang Zhang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zhuansun, Xiangxi" sort="Zhuansun, Xiangxi" uniqKey="Zhuansun X" first="Xiangxi" last="Zhuansun">Xiangxi Zhuansun</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Li, Huifang" sort="Li, Huifang" uniqKey="Li H" first="Huifang" last="Li">Huifang Li</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xin" sort="Chen, Xin" uniqKey="Chen X" first="Xin" last="Chen">Xin Chen</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Krugman, Tamar" sort="Krugman, Tamar" uniqKey="Krugman T" first="Tamar" last="Krugman">Tamar Krugman</name>
<affiliation>
<nlm:affiliation>Institute of Evolution University of Haifa, Mt. Carmel Haifa Israel.</nlm:affiliation>
<wicri:noCountry code="subField">Mt</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Sun, Qixin" sort="Sun, Qixin" uniqKey="Sun Q" first="Qixin" last="Sun">Qixin Sun</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Xie, Chaojie" sort="Xie, Chaojie" uniqKey="Xie C" first="Chaojie" last="Xie">Chaojie Xie</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant direct</title>
<idno type="eISSN">2475-4455</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Jasmonic acid (JA) is an important plant hormone associated with plant-pathogen defense. To study the role of JA in plant-fungal interactions, we applied a JA biosynthesis inhibitor, sodium diethyldithiocarbamate (DIECA), on wheat leaves. Our results showed that application of 10 mM DIECA 0-2 days before inoculation effectively induced resistance to powdery mildew (
<i>Bgt</i>
) in wheat. Transcriptome analysis identified 364 up-regulated and 68 down-regulated differentially expressed genes (DEGs) in DIECA-treated leaves compared with water-treated leaves. Gene ontology (GO) enrichment analysis of the DEGs revealed important GO terms and pathways, in particular, response to growth hormones, activity of glutathione metabolism (e.g., glutathione transferase activity), oxalate oxidase, and chitinase activity. Gene annotaion revealed that some
<i>pathogenesis-related</i>
(
<i>PR</i>
) genes, such as
<i>PR1.1</i>
,
<i>PR1</i>
,
<i>PR10</i>
,
<i>PR4a</i>
,
<i>Chitinase 8</i>
,
<i>beta-1,3-glucanase</i>
,
<i>RPM1</i>
,
<i>RGA2</i>
, and
<i>HSP70,</i>
were induced by DIECA treatment. DIECA reduced JA and auxin (IAA) levels, while increased brassinosteroid, glutathione, and ROS lesions in wheat leaves, which corroborated with the transcriptional changes. Our results suggest that DIECA can be applied to increase plant immunity and reduce the severity of
<i>Bgt</i>
disease in wheat fields.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32285024</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">2475-4455</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Plant direct</Title>
<ISOAbbreviation>Plant Direct</ISOAbbreviation>
</Journal>
<ArticleTitle>Exogenous sodium diethyldithiocarbamate, a Jasmonic acid biosynthesis inhibitor, induced resistance to powdery mildew in wheat.</ArticleTitle>
<Pagination>
<MedlinePgn>e00212</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/pld3.212</ELocationID>
<Abstract>
<AbstractText>Jasmonic acid (JA) is an important plant hormone associated with plant-pathogen defense. To study the role of JA in plant-fungal interactions, we applied a JA biosynthesis inhibitor, sodium diethyldithiocarbamate (DIECA), on wheat leaves. Our results showed that application of 10 mM DIECA 0-2 days before inoculation effectively induced resistance to powdery mildew (
<i>Bgt</i>
) in wheat. Transcriptome analysis identified 364 up-regulated and 68 down-regulated differentially expressed genes (DEGs) in DIECA-treated leaves compared with water-treated leaves. Gene ontology (GO) enrichment analysis of the DEGs revealed important GO terms and pathways, in particular, response to growth hormones, activity of glutathione metabolism (e.g., glutathione transferase activity), oxalate oxidase, and chitinase activity. Gene annotaion revealed that some
<i>pathogenesis-related</i>
(
<i>PR</i>
) genes, such as
<i>PR1.1</i>
,
<i>PR1</i>
,
<i>PR10</i>
,
<i>PR4a</i>
,
<i>Chitinase 8</i>
,
<i>beta-1,3-glucanase</i>
,
<i>RPM1</i>
,
<i>RGA2</i>
, and
<i>HSP70,</i>
were induced by DIECA treatment. DIECA reduced JA and auxin (IAA) levels, while increased brassinosteroid, glutathione, and ROS lesions in wheat leaves, which corroborated with the transcriptional changes. Our results suggest that DIECA can be applied to increase plant immunity and reduce the severity of
<i>Bgt</i>
disease in wheat fields.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Plant Direct published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yinghui</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-9271-4112</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Evolution University of Haifa, Mt. Carmel Haifa Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qiu</LastName>
<ForeName>Lina</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Qiang</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhuansun</LastName>
<ForeName>Xiangxi</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Huifang</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xin</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Krugman</LastName>
<ForeName>Tamar</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-0339-8515</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Evolution University of Haifa, Mt. Carmel Haifa Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Qixin</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xie</LastName>
<ForeName>Chaojie</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-6955-3330</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology Beijing Key Laboratory of Crop Genetic Improvement China Agricultural University Beijing China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant Direct</MedlineTA>
<NlmUniqueID>101716131</NlmUniqueID>
<ISSNLinking>2475-4455</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">auxin</Keyword>
<Keyword MajorTopicYN="N">brassinosteroid</Keyword>
<Keyword MajorTopicYN="N">jasmonic acid</Keyword>
<Keyword MajorTopicYN="N">powdery mildew</Keyword>
<Keyword MajorTopicYN="N">resistance</Keyword>
<Keyword MajorTopicYN="N">sodium diethyldithiocarbamate</Keyword>
<Keyword MajorTopicYN="N">wheat</Keyword>
</KeywordList>
<CoiStatement>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32285024</ArticleId>
<ArticleId IdType="doi">10.1002/pld3.212</ArticleId>
<ArticleId IdType="pii">PLD3212</ArticleId>
<ArticleId IdType="pmc">PMC7146025</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2000 Jun;123(2):563-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10859186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 Jan;20(1):12-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25278266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 May;74(4):626-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23425284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Aug;10(4):372-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17646123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2015 Sep;11(9):733-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26258762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Oct 1;21(19):3787-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15817693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Nov 24;6:37674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27883040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 16;341(6147):746-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23950531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Jun;26(5):509-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11439137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2016 Feb;85(4):478-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26749255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2016 Sep 21;7:413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27708588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Mar;152(3):1562-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20081042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2018 Jan 2;14(1):e1006811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29293681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jan;49(1):159-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17144898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:379-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2017 Feb 8;21(2):143-155</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28182949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):589-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21071600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Dec;138(4):1239-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7896103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Mar;69(4):473-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19083153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Dec 17;19(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30563020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8711-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9653149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2018 Apr 29;69:209-236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29489394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):1075-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17215350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2011 Nov 01;2:74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2019 Mar 4;12(3):360-373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30853061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Mar;26(3):271-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23151172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Feb 04;20(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30720746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 9;448(7154):661-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Apr;227(5):1161-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18214527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(2):R14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20132535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Aug;13(4):459-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20471306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2011 Jun;53(6):412-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21535470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2018 Jul - Aug;212-213:29-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29853166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Dec 21;9:1836</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30622544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Mar;61(6):1053-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Aug;102(4):1193-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8278547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Nov;62(15):5471-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21862481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Oct 23;17(20):1784-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17919906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Sep;47(6):851-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16889645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Apr;214(1):388-399</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27976810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Aug;6(8):1077-1085</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2016 Aug 4;54:303-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27296137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 May;6(3):887-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23125315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2013 Dec;103(12):1260-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23777406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2405-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21665999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2017 Jul 04;18(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28677656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2019 Jul 5;70(13):3401-3414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31173086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Oct;130(2):887-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Dec;25(12):1584-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22950753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):20131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18056646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2019 May 29;67(21):5932-5939</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30994341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 Jun;111(6):1021-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23558912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Mar 1;68(6):1349-1359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28158849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Oct;100(4):681-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 5;318(5847):113-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17916738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jan;20(1):228-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18192436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Apr;8(4):629-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8624439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:183-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19025383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Mar;33(5):887-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Jun;90(5):856-867</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27801967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Dec 19;5:5833</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25524530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Jan 15;20(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30650539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chim Acta. 2006 Jun 30;571(1):79-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17723423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2015 Dec;13(9):1233-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26096226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Apr 21;312(5772):436-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2013 Oct;18(10):555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23910453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1990 May;2(5):437-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2152169</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Chen, Xin" sort="Chen, Xin" uniqKey="Chen X" first="Xin" last="Chen">Xin Chen</name>
<name sortKey="Krugman, Tamar" sort="Krugman, Tamar" uniqKey="Krugman T" first="Tamar" last="Krugman">Tamar Krugman</name>
<name sortKey="Li, Huifang" sort="Li, Huifang" uniqKey="Li H" first="Huifang" last="Li">Huifang Li</name>
<name sortKey="Li, Yinghui" sort="Li, Yinghui" uniqKey="Li Y" first="Yinghui" last="Li">Yinghui Li</name>
<name sortKey="Qiu, Lina" sort="Qiu, Lina" uniqKey="Qiu L" first="Lina" last="Qiu">Lina Qiu</name>
<name sortKey="Sun, Qixin" sort="Sun, Qixin" uniqKey="Sun Q" first="Qixin" last="Sun">Qixin Sun</name>
<name sortKey="Xie, Chaojie" sort="Xie, Chaojie" uniqKey="Xie C" first="Chaojie" last="Xie">Chaojie Xie</name>
<name sortKey="Zhang, Qiang" sort="Zhang, Qiang" uniqKey="Zhang Q" first="Qiang" last="Zhang">Qiang Zhang</name>
<name sortKey="Zhuansun, Xiangxi" sort="Zhuansun, Xiangxi" uniqKey="Zhuansun X" first="Xiangxi" last="Zhuansun">Xiangxi Zhuansun</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantGlutaTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000154 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000154 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantGlutaTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32285024
   |texte=   Exogenous sodium diethyldithiocarbamate, a Jasmonic acid biosynthesis inhibitor, induced resistance to powdery mildew in wheat.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32285024" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantGlutaTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:50:29 2020. Site generation: Sat Nov 21 15:50:53 2020